
The spin-1 and spin-3/2 model on a bilayer Bethe lattice with crystal field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 376212

(http://iopscience.iop.org/0953-8984/19/37/376212)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 04:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/37
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 376212 (20pp) doi:10.1088/0953-8984/19/37/376212

The spin-1 and spin-3/2 model on a bilayer Bethe
lattice with crystal field

E Albayrak and S Yilmaz

Department of Physics, Erciyes University, 38039, Kayseri, Turkey

Received 21 May 2007, in final form 29 July 2007
Published 22 August 2007
Online at stacks.iop.org/JPhysCM/19/376212

Abstract
A bilayer Ising model consisting of two Bethe lattices, each of which is coupled
with crystal fields of different strengths and each with a branching ratio of q
Ising spins with one of the layers having only spin-1 and the other having only
spin-3/2, is laid over the top of the other and the two layers are tied together via
an interaction between the vertically aligned spins. After obtaining the ground-
state (GS) phase diagrams on different possible planes depending on the given
system parameters, the changes in the order-parameters and the free energy are
investigated by use of the exact recursion relations in a pairwise approach to
calculate the phase diagrams of the model. The ferromagnetic ordering in each
of the layers and ferromagnetic or antiferromagnetic ordering of the adjacent
nearest-neighbor (NN) spins of the layers are considered. The system presents
both second- and first-order phase transitions. The lines of the first-order phase
transitions end on either the stable or unstable tricritical points or at the isolated
critical points. The model also displays one or two compensation temperatures
when the bilinear interaction of the upper layer with spin-1 can compete with
that of the lower layers with spin-3/2.

1. Introduction

Thin films of various magnetic layered structures or superlattices have been receiving intense
attention lately [1]. They are made up of multiple layers of different magnetic materials,
therefore there is a high potential for technological improvements in information storage and
retrieval and in the synthesis of new magnets for a variety of applications [2] as well as also
presenting some interesting novel magnetic properties such as giant magnetoresistance [3],
surface magnetic anisotropy [4], enhanced surface magnetic moment [5] and surface
magnetoelastic coupling [6].

The multilayered structures containing only spin-1 atoms have been studied for only a
few cases: e.g. the exact recursion relations approach was followed for the cases without and
with the crystal field interactions [7] on the bilayer Bethe lattice. Coupled ferromagnetic and
antiferromagnetic thin film systems were studied with a Heisenberg-like Hamiltonian by the
application of a two-spin mean-field theory and an in-plane magnetic reorientation as a function
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of temperature [8]. The stochastic series expansion quantum Monte Carlo (MC) method
was used to study thin ferromagnetic films described by a Heisenberg model including local
anisotropies [9]. Ferromagnetic thin films with magnetic single-ion anisotropies were studied
within the framework of the Schwinger bosonization Heisenberg model and two alternative
bosonizations were discussed [10]. The effect of the transverse field on bulk melting and
layering sublimation transitions of a Blume–Emery–Griffiths (BEG) model was studied using
the mean field theory (MFT) [11]. The non-equilibrium magnetic domain structure of growing
ultrathin ferromagnetic films with a realistic atomic structure was studied as a function of
coverage and temperature by applying a kinetic MC method [12]. The magnetic order–disorder
layering transitions were investigated under the effect of variable surface crystal field using
the MFT [13]. The complete global phase diagram for a bilayer model, whose interactions
are described by the BEG model, was studied by the cluster variational method within the
pair approximation [14]. The order–disorder layering transitions of the Blume–Capel model
were investigated using MC simulations in the presence of a variable crystal field [15]. The
multilayered spin-3/2 systems have received less attention than for the case with spin-1,
i.e. there are only two works that we can report: the two-layered model with competing
interactions was studied by using the interfacial approximation on a square lattice [16] and
the bilayer Bethe lattice consisting of spin-3/2 atoms was studied by using the exact recursion
relations [17].

Furthermore, molecular-based magnetic materials with spontaneous magnetic moments
have been receiving great interest for their potential applications such as in thermomagnetic
recording and in devices [18]. It is believed that ferrimagnetic ordering plays a crucial role
in some of these materials. They consist of two unequal magnetic moments, i.e. a bipartite
lattice with spin-S and spin-σ or layered structures with alternatingly placed spin-S and spin-
σ , i.e. mixed multilayer systems, S �= σ , which interact antiferromagnetically, therefore their
moments do not cancel each other at low temperatures except at the compensation temperatures
(Tcomp). At the compensation points it was found that some physical properties present a
peculiar behavior. For instance, the coercive field (Hc) is strongly temperature dependent only
in the vicinity of Tcomp [19]. It is a maximum at Tcomp, falling to a minimum below Tcomp,
before rising again at low temperatures. This peculiar temperature dependence of Hc, together
with local heating by a focused laser beam, can be applied to attain a direct overwrite capability
in magneto-optical media [20].

As a result, multi-layer systems consisting of different types of spins in each layer have
also attracted a great deal of attention. Thus, for the case with spin-1/2 and spin-1 we can list
some of the works as follows: an Ising superlattice, consisting of two ferromagnetic materials
A and B, with La layers of diluted spins Sa = 1/2 and Lb layers of diluted spins Sb = 1
in an applied transverse field with antiferromagnetic interface coupling, was examined using
the effective field theory (EFT) with a probability distribution [21]. Two works including the
effects of the crystal field are: a trilayer system, with two mixed spin interfaces (SA = 1/2,
SB = 1) for arbitrary concentration and varied partial film thickness, was investigated using
the EFT [22]; and a ferromagnetic multilayer system, consisting of L layers of spin-1/2 A-
atoms, L layers of spin-1 B-atoms and a disordered phase in between them characterized by
a random arrangement of A- and B-atoms of ApB1−p type and negative A–B coupling, were
studied within the framework of the EFT [23].

The works for the case including only spin-1/2 and spin-3/2 atoms without a crystal field
may be given as: ferrimagnetic Ising layers in an applied transverse field were examined by
the use of EFT [24]; and the effects of an applied transverse magnetic field on the magnetic
properties in a ferrimagnetic bilayer system with disordered interfaces were investigated by the
use of the MFT [25]. Also, works including crystal field effects are: an amorphous bilayer
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system consisting of two magnetic monolayers was studied by the use of the EFT [26]; a
bilayer system with (A)2(ApB1−p)1(B)2, consisting periodically of two layers of spin-1/2 A
atoms, two layers of spin-3/2 atoms and an interface with alloying type (ApB1−p) disorder, was
examined by using the EFT [27]; a ferromagnetic multilayer system, consisting periodically of
two layers of spin-1/2 A-atoms, two layers of spin-3/2 B-atoms and a disordered interface
between them characterized by a random arrangement of A and B atoms of ApB1−p type and a
negative A–B coupling, was investigated via the standard MFT [28]; and the phase diagrams of
spin-1/2 Ising semi-infinite and film ferromagnets with spin-3/2 overlayers were investigated
within the framework of the EFT [29].

Some studies which examine the works with spin-1/2 and spin-1 or spin-3/2 and including
the crystal field effects are as follows: the critical behavior of an Ising multilayer system
consisting of alternating spin-1/2 and spin-S (S � 1/2) magnetic layers was given within
the cluster approximation introduced into the differential operator technique [30]; a general
formulation for the magnetic properties of layered Ising-type systems A2Bn composed of two
amorphous and n crystalline layers was presented for spin-1/2 and spin-S systems [31]; a
ferromagnetic or ferrimagnetic mixed Ising bilayer system with both spin-1/2 and spin-1 (or
spin-3/2) in a transverse crystal field was examined by the use of the EFT with a probability
distribution technique [32]; a bilayer model, made up of two magnetic monolayers (SA = 1/2
and SB = 1 or 3/2) with different interaction constants coupled together in a transverse crystal
field, was studied by the use of the EFT with correlations [33]; and a ferromagnetic amorphous
bilayer system, consisting of two monolayers (A and B) with different spins (SA = 1/2 and
SB = 1/2, 1) and different interaction constants coupled together with an interlayer coupling,
was studied by the EFT [34].

Unfortunately, we were not able to find any works including spin-1 and spin-3/2 atoms
for multilayer systems. Thus, in this study we consider the bilayer Bethe lattice with an upper
layer containing only spin-1 atoms with bilinear interaction constant J1 and crystal field D1

and a lower layer consisting of only spin-3/2 atoms with bilinear interaction constant J2 and
crystal field D2. Then the two layers are allowed to interact with a bilinear interaction constant
J3 between the adjacent NN spins of the layers. The exact solutions of the model were obtained
by the use of the exact recursion relations in a pairwise approach on the Bethe lattice [7, 17, 35].
As a result, the bilinear interaction and crystal field effects on the phase diagrams of the model
were obtained by studying the variations of the order-parameters and the free energy of the
system. The GS phase diagrams were also obtained as a guide in obtaining stable solutions of
the model.

We should also note that the magnetic properties of a small particle on a hexagonal lattice
are studied, where the particle was described by a mixed-spin Ising model in which the σ and
S-spins are distributed in concentric and hexagonal rings [36]. In this work they also cite the
work of Chern et al [37], which reports some measurements of the compensation points and
phase diagrams of Fe3O4/Mn3O4 superlattices, a system grown by deposition of alternate layers
of Fe3O4 and Mn3O4 coupled antiferromagnetically. Similar experimental examples with this
work may be extended further, but of course it may not be possible to find an experimental
work with one-to-one correspondence.

We have organized the rest of the paper as follows. In section 2, the bilayer Ising
model is introduced and then the ground-state phase diagrams are obtained and discussed. In
section 3 we obtain the order-parameters and free energy of the system in terms of the recursion
relations exactly. Besides the thermal variations of the magnetizations, the phase diagrams of
the model are illustrated and discussed in detail on different planes for given values of the
system parameters in section 4. Finally, in section 5 we give a brief summary and make some
concluding remarks.
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Figure 1. The bilayer Bethe lattice of coordination number q = 3. G1 and G2 refer to the upper
and lower layers containing the spin-1 and spin-3/2 labeled as Si and σi′ , respectively. While J1

and J2 are the bilinear interactions of spins in G1 and G2, J3 is the the bilinear interaction for the
NN adjacent spins of G1 and G2.

2. Bilayer Bethe lattice and its ground states

The bilayer Bethe lattice is made up of two symmetrically placed layers of Bethe lattices, each
of which has q NN Ising spins, i.e. coordination number, from its own layer and one adjacent
NN spin from the other layer; thus, far from the boundaries that are deep inside the bilayer
Bethe lattice, each spin has q+1 NNs in total, as shown in figure 1. The Hamiltonian, including
the crystal fields and the NN bilinear spin interactions for the bilayer Bethe lattice, is given as

H = −J1

∑

〈i j〉
Si S j − J2

∑

〈i ′ j ′〉
σi ′σ j ′ − J3

∑

〈ii ′ 〉
Siσi ′ − D1

∑

i

S2
i − D2

∑

i ′
σ 2

i ′ , (1)

where Si refers to spin-1 at site i with the values ±1 and 0 on the upper layer G1 and σi ′

refers to spin-3/2 at site i ′ with the values ±3/2 and ±1/2 on the lower layer G2. J1 and J2

are the intralayer bilinear interactions of the layers and the first and second summations run
over all NN sites of G1 and G2, respectively. J3 is the interlayer bilinear interaction of the
adjacent NN spins between the layers G1 and G2, thus the third summation runs over all the
adjacent neighboring sites of G1 and G2. D1 and D2 are the crystal field strengths coupled to
the upper and lower layers, and thus the last two summations are over all the sites of G1 and
G2, respectively.

In order to formulate the problem on the Bethe lattice, we need to introduce the order-
parameters of the model. Thus, the spin-1 of the central pair from G1 and spin-3/2 of the central
pair from G2 have magnetizations and quadrupolar order-parameters defined respectively as

m1 = 〈S0〉 and m2 = 〈σ0′ 〉, Q1 = 〈S2
0 〉 and Q2 = 〈σ 2

0′ 〉 (2)

where 〈· · ·〉 refers to the usual thermal average. Instead, one may equally use the total
magnetization m, total quadrupolar moment Q and the staggered magnetization η, defined
as

m = 1
2 (m1 + m2), Q = 1

2 (Q1 + Q2) and η = 1
2 (m1 − m2). (3)

The last order-parameter measures the correlations between the adjacent NN spins of the layers
and is defined as

ρ = 〈S0σ0′ 〉 − 〈S0〉〈σ0′ 〉 (4)

which is called the spin–spin correlation function.
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Table 1. Ground-state configurations for spin-1 and spin-3/2 model on the bilayer Bethe lattice.
The phases are indicated with (S0, S1) and (σ0′ , σ1′ ) NN pairs for the layers in G1 and G2 with
ground-state values of spin-1 and spin-3/2, respectively.

I ±1,±1

± 3
2 ,± 3

2

II ±1,±1

∓ 3
2 , ∓ 3

2

III ±1,∓1

± 3
2 ,∓ 3

2

IV ∓1,±1

± 3
2 ,∓ 3

2

V ∓1,∓1

± 3
2 , ∓ 3

2

VI 0,∓1

± 3
2 ,∓ 3

2

VII 0,∓1

∓ 3
2 ,± 3

2

VIII ∓1,∓1

∓ 3
2 , ∓ 1

2

IX ∓1,∓1

± 1
2 ,∓ 3

2

X ∓1,∓1

± 3
2 ,∓ 1

2

XI ∓1,∓1

± 3
2 , ± 1

2

XII ∓1,∓1

∓ 1
2 ,∓ 1

2

XIII ∓1,∓1

∓ 1
2 ,± 1

2

XIV ∓1,∓1

± 1
2 , ± 1

2

XV 0, 0

∓ 3
2 ,± 3

2

XVI 0, 0

± 1
2 ,∓ 1

2

XVII 0, 0

∓ 1
2 , ∓ 1

2

XVIII 0, 0

∓ 3
2 ,∓ 3

2

XIX ∓1,±1

∓ 1
2 ,± 1

2

XX 0,∓1

∓ 3
2 , ∓ 3

2

XXI ∓1,±1

± 1
2 ,∓ 1

2

XXII 0,∓1

± 3
2 ,± 3

2

In addition to the order-parameters, we also need the GS phase diagrams, to use them
as a guide in obtaining stable solutions for the temperature-dependent phase diagrams of the
model. In order to obtain the GS phase diagrams, we consider a central plaquette which consist
of four NN pair spins of the bilayer system with one pair 〈i j〉 with spin-1 only on layer G1,
one pair 〈i ′ j ′〉 with spin-3/2 only on layer G2, and two pairs 〈i i ′〉 and 〈 j j ′〉 connecting layers
G1 and G2 between the two spin-1 and spin-3/2 pairs only. The GS phase diagrams were
obtained by comparing the values of the energy for different spin configurations and then the
GS configurations are those with the lowest energy for given values of the system parameters.
As a result, we have obtained the following 22 different types of GS configurations from
consideration of the central plaquette deep inside the bilayer Bethe lattice, as given in table 1.

In the GS phase diagrams the lines are the boundary lines separating the different types of
phases, thus each line contains each of the phases that are involved in the separation and may
be called the coexistence lines. The points at which these lines combine are the multiphase
points, where all the allowed phases coexist. Thus the first GS phase diagrams are obtained on
the (J2/|J1|, J3/q|J1|) plane for arbitrarily given values of D/q|J1|, i.e. D = D1 = D2, and
are presented in figures 2((i)–(v)). In figure 2(i ) for D/q|J1| � 0, we see that the system only
presents the configurations I–V, i.e. ferromagnetic, ferrimagnetic, mixed, antiferromagnetic
and surface ferromagnetic phases, respectively. We obtain the same GS phase diagrams for
zero and all positive values of the crystal field, which means that the crystal field has no
effect on the model when it is positive. But, for negative values of the crystal field, the GS
phase diagrams change drastically. For D/q|J1| < 0, the multiphase lines are split by the
new configurations. These new configurations are seen at higher ground-state energies as the
D/q|J1| becomes more and more negative. Figure 2(i i ) is obtained for D/q|J1| = −0.25,
which presents the new configurations VI–XIV compared with the previous figure. Thus it
is obvious that the magnetizations of the layers are never zero, since only one of the spins
in layer G1 prefers to be in the spin-0 state; see table 1. But when D/q|J1| = −0.5, as
depicted in figure 2(i i i ), we see that the configurations V, IX, X and XIII of figure 2(i i ) have
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Figure 2. The ground-state phase diagrams: on the (J2/|J1|, J3/q|J1|) planes for (i) D/q|J1| � 0,
(i i) D/q|J1| = −0.25, (i i i) D/q|J1| = −0.5, (iv) D/q|J1| = −0.75 and (v) D/q|J1| = −1.0;
(vi) on the (D/q|J |, J3/q|J |) plane for J1 = J2 = J = 1.0; (vii) on the (D1/q|J |, D2/q|J |)
plane for J1 = J2 = J = 1.0 and J3/q|J | = 1.0; (viii) on the (q J/|J3|, D/|J3|) plane for
J1 = J2 = J = 1.0 J3/q|J | = 1.0; and (i x) on the (q J2/|J3|, q J1/|J3|) plane for D/|J3| = −1.0
and J3 = 1.0.

6



J. Phys.: Condens. Matter 19 (2007) 376212 E Albayrak and S Yilmaz

Figure 2. (Continued.)

disappeared, but instead the configurations XV and XVI appear, for which the magnetization
of the layers vanishes, since both spin-1 in layer G1 prefer to be in the spin-0 state and the
layer G2 is in the antiferromagnetic configuration (so the total magnetization becomes zero).
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Figure 2(iv) illustrates the GS phase diagram when D/q|J1| is set equal to −0.75, which
shows that the multiphase lines separating the phases XII and XIV and I and II of figure 2(i i i )
are split by the new configurations XVII and XVIII, respectively. It is clear from figure 2(v)
that, as D/q|J1| becomes more negative, neither the configurations nor the patterns of the
configurations change, but the areas covered by them increase. Figure 2(vi ) illustrates the
phase diagram on the (D/q|J |, J3/q|J |) plane for J1 = J2 = J = 1.0, where we see that
the model only presents the phases I, II and XVII. This may be caused by the reduction in
the number of system parameters by one with the condition J1 = J2 = J . The next GS
phase diagrams are presented on the (D1/q|J |, D2/q|J |) plane for J1 = J2 = J = 1.0 when
J3/q J = 1.0 in figure 2(vi i ). It should be mentioned that the phases I and XII of figure 2(vi i )
are replaced by the phases II and XIV, respectively, with a sign change of J3. But the two
phases XVII and XVIII remain unchanged with a sign change of J3, since the spins of the
upper layer are in the spin-0 state. Figure 2(vi i i ) is obtained for J1 = J2 = J when J3 = 1 on
the (q J/|J3|, D/|J3|) plane. For this, phases I and III when J3 = 1 are exchanged with phases
II and IV, respectively, with a sign change of J3, as expected. But the phases XVI and XVII
remain unchanged again, since the spins of the upper layer are in the spin-0 state. The final GS
phase diagram is obtained on the (q J2/|J3|, q J1/|J3|) plane for D/|J3| = −1.0 when J3 = 1.
Note that the sign change of J3 causes phases I, III, VI, XII, XIX and XX of this figure 2(i x) to
be exchanged with phases II, IV, VII, XIV, XXI and XXII, respectively. But the phases V, XVI
and XVII remain unchanged in both figures. It should be noted that the GS phase diagrams
are used to obtain the stable solutions and configurations of the temperature-dependent phase
diagrams, which will be examined in section 4.

3. The system parameters in terms of the recursion relations

In order to obtain the exact recursion relations on the bilayer Bethe lattice, one has to start
with a calculation of the partition function of the model. In the calculation, we assume that
the adjacent NN spins of G1 and G2 containing one spin-1 and one spin-3/2 are considered as
pairs; see figure 1. The first pair deep inside the bilayer lattice is called the central pair, which
forms the first-generation spins. This central pair of spins is connected by q NN spin pairs,
i.e. the coordination number, which forms the second-generation spins. Each pair of spins in
the second generation is joined to (q − 1) NNs. Therefore, in total the second generation has
q(q − 1) NNs which form the third generation, and so on to infinity [7, 17, 35]. Thus each
spin far from the boundaries has (q + 1) NN spins: q spins from the layer to which it belongs,
i.e. with same type of spin, and one from the adjacent layer, i.e. with the other type of spin.

The usual definition of the partition function is given as

Z =
∑

All Config.

e−βH =
∑

Spc

P(Spc), (5)

and it is calculated in a recursive approach on the bilayer Bethe lattice by using the Ising
Hamiltonian, i.e. equation (1). The P(Spc) may be considered as an unnormalized probability
distribution over the spin configurations (Spc). Starting from the central pair of spins on the
Bethe lattice made up of q separate branches connecting each of the pair of spins, one follows
only one of the branches of the tree out of q , therefore for the full formulation we have to
define the partition function for each of these separate branches named gn(S, σ ). It should be
mentioned that each spin Si with spin-1 can take the values ±1 and 0, and each spin σi ′ with
spin-3/2 can take the values ±3/2 and ±1/2, thus we have to define 12 gn(S, σ ) functions
for 3 × 4 = 12 configurations for each pair of spins at their sites. Thus in this pairwise
approach [7, 17, 35], 11 exact recursion relations are defined as the ratios of these partition
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functions of the separate branches on the bilayer Bethe lattice, and are given as

An = gn(1, 3
2 )

gn(−1, −1
2 )

, Bn = gn(1, 1
2 )

gn(−1, −1
2 )

, Cn = gn(1, −1
2 )

gn(−1, −1
2 )

,

Dn = gn(1, −3
2 )

gn(−1, −1
2 )

, En = gn(0, 3
2 )

gn(−1, −1
2 )

, Fn = gn(0, 1
2 )

gn(−1, −1
2 )

,

Gn = gn(0, −1
2 )

gn(−1, −1
2 )

, Hn = gn(0, −3
2 )

gn(−1, −1
2 )

, In = gn(−1, 3
2 )

gn(−1, −1
2 )

,

Jn = gn(−1, 1
2 )

gn(−1, −1
2 )

, Kn = gn(−1, −3
2 )

gn(−1, −1
2 )

,

(6)

where each recursion relation is a function of the recursion relations for the NN shell with
(n − 1), therefore they are totally nonlinear in their nature. In order to obtain their numerical
values for given system parameters, numerical methods were to be employed. Note also that
the choice of what ratios of these gn(S, σ ) functions is to be taken is totally arbitrary. In the
thermodynamic limit (n → ∞) these recursion relations determine the states of the system,
therefore they may be called the equations of state. Unfortunately, the explicit formulations of
the recursion relations are too long to be given here.

Now we can obtain the order-parameters of the model in terms of these recursion relations.
Thus, the magnetizations and quadrupolar moments are calculated in terms of the recursion
relations for layer G1 with spin-1 of the central pair as

M1 = 〈S0〉 = [eβ( 3
2 J3+D1+ 9

4 D2) Aq
n + eβ( 1

2 J3+D1+ 1
4 D2) Bq

n

+ eβ(− 1
2 J3+D1+ 1

4 D2)Cq
n + eβ(− 3

2 J3+D1+ 9
4 D2) Dq

n − eβ(− 3
2 J3+D1+ 9

4 D2) I q
n

− eβ(− 1
2 J3+D1+ 1

4 D2) J q
n − eβ( 3

2 J3+D1+ 9
4 D2)K q

n − eβ( 1
2 J3+D1+ 1

4 D2)]/�1 (7)

and

Q1 = 〈S2
0 〉 = [eβ( 3

2 J3+D1+ 9
4 D2) Aq

n + eβ( 1
2 J3+D1+ 1

4 D2)Bq
n

+ eβ(− 1
2 J3+D1+ 1

4 D2)Cq
n + eβ(− 3

2 J3+D1+ 9
4 D2) Dq

n + eβ(− 3
2 J3+D1+ 9

4 D2) I q
n

+ eβ(− 1
2 J3+D1+ 1

4 D2) J q
n + eβ( 3

2 J3+D1+ 9
4 D2)K q

n + eβ( 1
2 J3+D1+ 1

4 D2)]/�1, (8)

and for layer G2 with spin-3/2 of the central pair as

M2 = 〈σ0′ 〉 = [3eβ( 3
2 J3+D1+ 9

4 D2) Aq
n + eβ( 1

2 J3+D1+ 1
4 D2) Bq

n

− eβ(− 1
2 J3+D1+ 1

4 D2)Cq
n − 3eβ(− 3

2 J3+D1+ 9
4 D2) Dq

n + 3e
9
4 βD2 Eq

n + e
1
4 βD2 Fq

n

− e
1
4 βD2 Gq

n − 3e
9
4 βD2 H q

n + 3eβ(− 3
2 J3+D1+ 9

4 D2) I q
n + eβ(− 1

2 J3+D1+ 1
4 D2) J q

n

− 3eβ( 3
2 J3+D1+ 9

4 D2)K q
n − eβ( 1

2 J3+D1+ 1
4 D2)]/2�1 (9)

and

Q2 = 〈σ 2
0′ 〉 = [9eβ( 3
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respectively. �1 is the partition function, obtained from equation (5) in terms of the recursion
relations as

�1 = eβ( 3
2 J3+D1+ 9

4 D2) Aq
n + eβ( 1

2 J3+D1+ 1
4 D2) Bq

n

+ eβ(− 1
2 J3+D1+ 1
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n + eβ(− 3
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4 D2) Dq

n + e
9
4 βD2 Eq

n + e
1
4 βD2 Fq

n

+ e
1
4 βD2 Gq

n + e
9
4 βD2 H q

n + eβ(− 3
2 J3+D1+ 9

4 D2) I q
n + eβ(− 1

2 J3+D1+ 1
4 D2) J q

n

+ eβ( 3
2 J3+D1+ 9

4 D2)K q
n + eβ( 1

2 J3+D1+ 1
4 D2). (11)

The last order-parameter is the spin–spin correlation function between the adjacent NN spins
of the central pair of two layers, and is expressed by

ρ = [3eβ( 3
2 J3+D1+ 9

4 D2) Aq
n + eβ( 1

2 J3+D1+ 1
4 D2) Bq

n − eβ(− 1
2 J3+D1+ 1

4 D2)Cq
n

− 3eβ(− 3
2 J3+D1+ 9

4 D2) Dq
n − 3eβ(− 3

2 J3+D1+ 9
4 D2) I q

n − eβ(− 1
2 J3+D1+ 1

4 D2) J q
n

+ 3eβ( 3
2 J3+D1+ 9

4 D2)K q
n + eβ( 1

2 J3+D1+ 1
4 D2)]/2�1 − 〈S0〉〈σ0′ 〉. (12)

In addition to the order-parameters, one also needs the free energy in terms of the recursion
relations to obtain the stable solutions of the model. The free-energy expression on the Bethe
lattice has already been obtained for the case with only one spin per lattice site [38], but it can
easily be generalized to our case. Hence, the free energy of a homogeneous phase of the bilayer
Bethe lattice is given as

−β F = 2 − q

2
ln(�1) + q

2
ln(�2) (13)

where

�2 = eβ(−J1− 3
4 J2+ 3

2 J3+D1+ 9
4 D2) Aq−1

n−1 + eβ(−J1− 1
4 J2+ 1

2 J3+D1+ 1
4 D2) Bq−1

n−1

+ eβ(−J1+ 1
4 J2− 1

2 J3+D1+ 1
4 D2)Cq−1

n−1 + eβ(−J1+ 3
4 J2− 3

2 J3+D1+ 9
4 D2) Dq−1

n−1

+ eβ(− 3
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4 D2). (14)

The obtained free-energy values for given system parameters are used to find the places of
the first-order phase transition temperatures and the stable solutions of the model. We should
also note that, in order to obtain the behaviors of the order-parameters and the free energy,
first the recursion relations are calculated by using an iteration scheme, then the values of the
recursion relations that are found are inserted into the definitions of the order-parameters and
the free energy, which are functions of the interlayer and intralayer bilinear interactions, the
crystal fields coupled to the layers, and the coordination number q . Detailed phase diagrams of
the model are obtained from a study of the variations in the order-parameters and free energy
in the guidance of the GS phase diagrams, and are given in the next section.

4. Variations of the system parameters and phase diagrams

The critical temperatures and their behaviors were studied to obtain the phase diagrams of the
model for the case with only J1 > 0 and J2 > 0, ferromagnetic couplings in layers G1 and
G2, and J3 > 0 or J3 < 0, ferromagnetic or antiferromagnetic coupling between the layers,
respectively, including the effects of the crystal fields of the layers. Note that in the rest of this
work we use the term temperature, T , in place of the reduced temperature kT/Ji , with i = 1
or with no subscript when J1 = J2 = J3.

10
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Before going on to study the phase diagrams, first we have searched for the existence of an
important phenomenon, i.e. the compensation. The compensation temperature, Tcomp, can be
located by finding the crossing point between the absolute values of the layer magnetizations,

|M1(Tcomp)| = |M2(Tcomp)| (15)

or when the net magnetization goes to zero

MNET = |M1(Tcomp)| − |M2(Tcomp)| = 0 (16)

with the conditions

sign[M2(Tcomp)] = −sign[M1(Tcomp)], Tcomp < Tc. (17)

These conditions ensure that at Tcomp the two layer magnetizations cancel each other, whereas
at the second-order phase transition temperature, Tc, both layer magnetizations and the net
magnetization go to zero. Thus we have obtained that the model presents one or two
compensations, depending on the values of the system parameters. Figure 3(a) shows the
existence of only one compensation for J2/J1 = 0.1, J3/J1 = 0.2 and D1/J1 = D2/J1 =
9.0. The compensation temperature Tcomp 	 0.696 and the second-order phase transition
temperature Tc 	 1.89, where Tcomp < Tc, as expected. The inset of the figure shows the effect
of changing the J3/J1 values and illustrates that, as J3/J1 values increase, the Tcomp increases
and gets closer to the Tc values. Figure 3(b) presents the existence of two compensations for
J2/J1 = J3/J1 = 1.0, D1/J1 = 2.0 and D2/J1 = −1.25. The first compensation is seen
at higher values of magnetization and at a lower temperature, Tcomp1 	 0.966, and the second
one is seen at lower values of magnetization and at a higher temperature Tcomp2 	 1.742,
where Tc = 2.478 (the inset presents the D1/J1 variations of the compensations). In addition,
the thermal variations of magnetization are also studied to present a few points clearly for
J3 = 0, i.e. in that case we have two non-interacting single-layered Bethe lattices. As the spin
values become lower, the order–disorder temperatures are seen at lower temperatures when
J1 = J2, i.e. spin-1 has a lower order–disorder temperature than spin-3/2, which persists until
some critical value of J2 of spin-3/2. At this critical value, the magnetizations of both the
layers go to zero together at the same order–disorder temperature, and below which the layer
with higher spin goes to zero temperature before the layer with lower spin and when the layer
magnetizations can compensate each other before the magnetizations go to zero. In the figures,
we present the layer magnetizations, m1 and m2, the total magnetization m and the staggered
magnetization η (the absolute value of η is used to show the existence of the compensation
temperatures). Figure 3(c) is obtained for D/q J1 = 3.0, J2/J1 = 1.0 and J3 = 0.0, and it
is clear that the order–disorder temperature, or the second-order phase transition temperature,
of m1 is Tc1, which acts as the first-order phase transition temperature, Tt, of m and η. After
these temperatures, the system is driven by the lower layer with spin-3/2, since above these
temperatures the upper layer with spin-1 remains disordered. This means that above Tc1, the
system jumps to the order–disorder temperatures, Tc2, of the lower layer with spin-3/2, and
in between there is a gap where no critical temperatures exist. The Tc temperatures of the
layers become equal at some critical value of J2/J1, below which the magnetization of the
lower layer becomes zero before the upper layer. Thus, when J2/J1 = 0.1, the roles of the
layers changes (see figure 3(d)). In this case the lower layer with higher spin presents its order–
disorder temperature before the upper layer with lower spin, since J2 is less than its critical
value, Tc2 < Tc1. Now Tc2s act as the Tt temperatures of m and η. Afterwards, the system
jumps to the critical values of the upper layer, and in between there is a gap with no critical
temperatures. Note also that the system can only compensate when J2 is less than its critical
values.
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(a)

(b)

Figure 3. The thermal variations of m1, m2 and mcomp = |m1 − m2|: (a) showing only one
compensation, with the compensation temperature Tcomp indicated by a square, for J3/J1 =
0.2, J2/J1 = 0.1 and D1/J1 = D2/J1 = 9.0; (b) showing two compensations for J3/J1 =
J2/J1 = 1.0 and D1/J1 = 2.0 and D2/J1 = −1.25. The thermal variations of m1, m2, m and
|η| for J3/J1 = 0.0; (c) showing that the Tc1 of m1 acts as the Tt of m and |η| with Tc2 > Tc1 for
D/q J1 = 3.0 and J2/J1 = 1.0; and (d) showing that the Tc2 of m2 acts as the Tt of m and |η| with
Tc1 > Tc2 for D/q J1 = 3.0 and J2/J1 = 0.1.

We are now ready to obtain the phase diagrams of our model on some of the possible
planes, depending on the given system parameters in the light of the GS phase diagrams for
q = 3 corresponding to the honeycomb lattice. In the phase diagrams, the second- and first-
order phase transition temperature lines and the lines of the compensation temperatures are
indicated by solid, dashed and gray dotted-dashed lines, respectively. The filled (•) circles
and the empty circles (◦) indicate the tricritical (TCP) and isolated critical points, respectively.
Meanwhile, the values of the quadrupole moments are used to distinguish the P+ and P− phases
of the paramagnetic phase corresponding to the (i) m = 0, Q > 23/24, and (i i) m = 0,
Q < 23/24, respectively, and the boundaries in between them are indicated by dotted lines.

12



J. Phys.: Condens. Matter 19 (2007) 376212 E Albayrak and S Yilmaz

(c)

(d)

Figure 3. (Continued.)

The first phase diagram is obtained on the (kT/J1, J3/J1) plane to show the effect of
changing J2/J1, i.e. for the values of 0.1, 0.25, 0.35, 0.6 and 1.0, for equal values of the crystal
fields, D/q J1 = 1.0, for the layers; see figure 4(a). As can be seen, phases I and II are separated
by Tt-lines at low temperatures which continue until the (◦)s for each given J2/J1 value along
J3/J1 = 0. Then, above these (◦)s, the system jumps to the Tc temperatures of either the lower
layer or the upper layer, depending on the competition between J1 and J2 values and where a
triple point (TP) is formed. Thus the crossed lines along J3 = 0 are the lines of no transitions
between the (◦)s and the TPs for a given J2/J1. At the TPs, three phases I, II and P+ coexist
together and, where the Tc-lines separate into two symmetrical wings, i.e while the upper Tc-
line separates the phases I and P+ corresponding to J3/J1 > 0, the lower one separates the
phases II and P+ corresponding to the J3/J1 < 0. As |J3/J1| → ∞, these wings become
constant at kT/J1 	 2.27, 2.89, 3.3, 4.33 and 5.98 for a given J2/J1 in the above order. It
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(a)

(b)
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Figure 4. The phase diagrams on the (kT/J1, J3/J1) planes for (a) D/q J1 = 1.0 and J2/J1 =
0.1, 0.25, 0.35, 0.6, 1.0; (b) D/q J1 = −0.5 and J2/J1 = 0.1, 0.5, 1.5, 2.0; (c) D/q J1 = −1.0
and J2/J1 = 0.1; (d) D/q J1 = −1.0 and J2/J1 = 1.5, 2.5, 3.5.

is clear that, as J2/J1 decreases, the P+ phase pushes the Tc-lines to lower temperatures,
increasing the disorder in the system. The (◦) temperatures corresponding to J2/J1 values
are about 0.47, 1.1, 1.45, 1.75 and 1.82, respectively. As the J2/J1 values decrease, the
(◦) points appear at lower temperatures. The system presents compensation temperatures for
J2/J1 = 0.1, 0.25 and 0.35. These are found by taking the absolute values of m (η) in the region
with the phase II (I), respectively. Thus, for each value of J2/J1, two symmetrical branches
of compensation lines emerging from the same temperature are found. As the temperature
increases, these branches move linearly to higher |J3/J1| values and eventually end on the
corresponding Tc-lines. It is clear that, for lower values of J2, the system exhibits compensation
temperatures, since then J1 of spin-1 can compete with J2 of spin-3/2.

For negative values of the crystal fields, the phase diagrams change drastically at low
temperatures. According to the GS phase diagram in figure 2(i i i ), figure 4(b) presents such
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(c)

(d)

Figure 4. (Continued.)

a phase diagram again on the (kT/J1, J3/J1) plane for J2/J1 = 0.1, 0.5, 1.5 and 2.0 when
D/q J1 = −0.5. Besides the Tt-lines similar to those (i.e. ending on the (◦)s) in figure 4(a)
along J3/J1 = 0, two more symmetrical Tt-lines when J3/J1 �= 0 for J2/J1 = 0.1 and 0.5 are
obtained, as seen in figure 4(b). These two symmetrical lines continue until the (•) points,
from which two symmetrical Tc-lines emerge. Then these lines end on the corresponding
wing-shaped Tc-lines. These combinations of the Tt- and Tc-lines separate the phases I and
XII when J3/J1 > 0 and the phases XIV and II when J3/J1 < 0. The phases XII and XIV
for J3/J1 = 0 are separated by the Tt-lines ending at the (◦)s. The behaviors of the critical
lines for J2/J1 = 1.5 and 2.0 remain qualitatively unchanged in comparison with the previous
figure. Again, the crossed lines along J3/J1 = 0 correspond to the lines of no transitions
between the (◦)s and TPs. We have found that the system exhibits compensation temperatures
for J2/J1 = 0.1 and 0.5. Two symmetrical branches of Tcomp-lines emerge from J3/J1 = 0-
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axis; actually, they form a shape that looks like the upper part of the human lips. Then, from the
lowest part of this line, part of the roughly linear Tcomp-lines emerges for each J2/J1 = 0.1 and
0.5. It is obvious that the Tcomp-lines are seen in the regions of the ordered phases. In addition,
two symmetrical branches of the phase boundary lines separating the P+ and P− phases appear
on the Tc-lines, which spreads very slowly as the temperature increases.

The phase diagrams, as presented in figures 4(c) and (d), were obtained from consideration
of the GS phase diagram in figure 2(v). In figure 4(c), obtained for J2/J1 = 0.1 and
D/q J1 = −1.0, one expects two pairs of symmetrical Tt-lines at kT/J1 = 0 according to the
GS phase diagrams. Thus the first pair of Tt-lines are seen at higher J3/J1, i.e. at about ±5.703,
which end on the (•) points from where two symmetrical Tc-lines come out. We see that these
Tc-lines combine with other symmetrical Tc-lines at a higher temperature. The second pair of
Tt-lines is seen at lower J3/J1 	 ±3.9, which end on the higher (•) point temperatures from
where the symmetrical Tc-lines appear again. As we mentioned above, these Tc-lines combine
with the previous ones and, as |J3/J1| → ∞, they become constant at a temperature of about
2.27. A second Tc-line with a vertical portion connects the second pair of Tt-lines at a lower
temperature. Note also that the first pair of critical lines separates the phases I and XII from
above and II and XIV from below. The second pair separates the phases XII and XVII from
above and XIV and XVII from below at very low temperatures, but they are separated by the
P− phase afterwards. Two symmetrical compensation lines also appear in the phase regions
XII and XIV. Figure 4(d) was calculated for J2/J1 = 1.5, 2.5 and 3.5 and D/q J1 = −1.0.
For J2/J1 = 1.5, one has to go through the phases II, XVII and I, while for J2/J1 = 2.5 and
3.5 the phases II, XVIII and I have to be crossed according to figure 2(v). Thus, in order to
distinguish these phases and the critical lines in the phase diagrams, we have indicated them
in gray for J2/J1 = 1.5. As can be seen, two symmetrical Tt-lines appear at zero temperature
which end on the corresponding (•) points and again, from them, two symmetrical Tc-lines
emerge for each J2/J1 value. Eventually, they all connect with the corresponding wing-shaped
Tc-line, which has a vertical section for J2/J1 = 1.5 in comparison with the others. As can be
seen, the upper part of the critical lines for J2/J1 = 1.5 separates the phases I and XVII and the
lower part separates the phases II and XVII below the lowest temperature of the wing-shaped
Tc-line, and with P− afterwards. For J2/J1 = 2.5 and 3.5, the phase XVII is exchanged with
XVIII in comparison to the case with J2/J1 = 1.5. Again, the dotted lines are the boundary
lines separating the phases P− and P+.

Figures 5(a) and (b) were obtained on the (kT/J, J3/J ) and (D/J, kT/J ) planes for
given values D/q J and J3/J , respectively, when J1 = J2 = J by using figure 2(vi ). In
figure 5(a), the phase diagram for D/q J = −1.0 is almost the same as that in figure 4(d)
when J2/J1 = 1.5, i.e. even the critical lines separate the same phases. When D/q J = −0.6,
the system presents first a Tt-line starting from zero temperature, which is then separated into
two symmetrical Tt-lines at a temperature about kT/J = 0.16, then the rest of its behavior
is qualitatively similar to previous case, i.e. when D/q J = −1.0. For the zero and positive
values of D/q J , i.e. 0.0, 0.5, 2.5 and 5.0, the critical lines are also qualitatively similar to those
in figure 4(a). For these values of D/q J , we did not find any compensations. The (P) phase
is divided into the P+ and P− phases for D/q J = −1.0 and −0.6, that is, the exterior and
the interior regions of the dotted lines are the P+ and P− phases, respectively, and this only
consists of the P+ phase for D/q J = 0.0, 0.5, 2.5 and 5.0. Note also that the wing-shaped
Tc-lines coincide and become constant at a temperature of about 5.98 for all D/q J values. In
figure 5(b), the Tc-lines start at a temperature of about 0.469 for all values of J3/J . As the
crystal field values increase, the Tc temperatures of these lines also increase sharply at first,
but as the D/J values increase further they become constant at some temperatures. These
temperatures are observed at higher values, for higher value of J3/J . Besides, the system also

16



J. Phys.: Condens. Matter 19 (2007) 376212 E Albayrak and S Yilmaz

(a)

(b)

Figure 5. The phase diagrams on the (a) (kT/J, J3/J ) and (b) (D/J, kT/J ) planes for given
D/q J and J3/J values, respectively.

exhibits Tt-lines separating the phases XVII and I for all values of J3/J . These lines end at
isolated critical points indicated by (◦). The P− and P+ phases are separated by boundary lines
starting from the Tc-lines for each J3/J . Below the joints between the boundary lines and the
Tc-lines, the P− and I phases and the above P+ and I phases are separated by Tc-lines.

Our final two phase diagrams are obtained on the (Di/J, kT/J ) planes for given D j/J ,
i �= j , when J1 = J2 = J and J3/q J = 1.0 with i = 1, 2. The first one is given in
figure 6(a) with i = 1 and for given D2/J values. The upper inset shows that Tc-lines starting
from different temperatures as D1/J → −∞ for D2/J = 0.0,−0.75 and −1.2 are not very
interesting, since they do not present any critical points along them. These lines separate the
paramagnetic phases from phases I and XVIII at high and low D1/J values, respectively. The
boundary lines separating P− and P+ phases and the Tt-lines ending at the isolated critical
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(a)

(b)

Figure 6. The phase diagrams on the (a) (D1/J, kT/J ) and (b) (D2/J, kT/J ) planes for given
D2/J and D1/J values, respectively.

points are also found, and these show similar behaviors to those in the previous figure. Note
also that these Tt-lines separate the phases I and XVIII at low temperatures. But in the
main figure, the behaviors of the Tc-lines present new behaviors; they start from the same
temperature, i.e. kT/J = 0.475, as D1/J → −∞ but, as D1/J increases, they suddenly
exhibit tricritical points along the same temperature at D1/J = −5.61, −4.85 and −4.2
for D2/J = −1.8,−2.25 and −2.55, respectively. These first TCP points are the unstable
ones, as will be clear in a while. The Tt-lines emerge from these unstable TCP points for
each D2/J = −1.8,−2.25 and −2.55, and then they end on the second TCP points, but now
they are stable since their free energies are lower in comparison with the previous ones. The
second Tc-lines emerge from these stable TCP points and, as the temperature increases, they
also increase gradually, and as D1/J → ∞, they become constant at some temperature. When
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D2/J = −9.0 we see that these TCP points and the portion of the Tt-lines between them
disappear, i.e. its behavior is the same as those in the upper inset. We have also found that
the Tt-lines end at the isolated critical points for D2/J = −1.8, −2.25 and −9.0, but for
D2/J = −2.55 the Tt-line does not present an isolated critical point, i.e. it is continuous at
kT/J = 0.124. Note also that the Tt-lines for D2/J = −1.8 and −2.25 separate the phases I
and XVII, and for D2/J = −9.0 it separates the phases XII and XVII, but for D2/J = −2.55
the continuous Tt-line separates the phases XVII and I at low D1/J and separates the phases
XII and I at higher D1/J (see lower inset). The boundary lines separating the P− and P+ phases
move towards the right, i.e. to higher values of D1/J , as D2/J becomes more negative. The
compensation lines emerge from their corresponding Tc-lines and are seen to move to lower
D1/J values as D2/J becomes more negative. The next and final phase diagram, figure 6(b),
was obtained on the (D2/J, kT/J ) plane for a given D1/J . The behaviors of the Tc-lines for
D1/J = 9.0, 3.0, 0.0, −1.5, −2.25 and −2.55 are similar to those presented in the upper inset
of the previous figure. The Tt-lines for these values of D1/J lie along the same points, end
on the same isolated critical points, and separate the phases XII and I. The compensation lines
emerge from their corresponding Tc-lines at higher temperatures, and they combine at lower
temperature and terminate for D1/J = 9.0, 3.0, 0.0 and −1.5, but they make a U-turn towards
the left for D1/J = −2.25 and −2.55 and, as D2/J → −∞, they become continuous at some
constant temperatures. In the inset we see that the system presents unstable and stable TCPs
and isolated critical points for D1/J = −3.6 and −4.5, as in figure 6(a) for D2/J = −1.8
and −2.25. The Tt-lines separate the phases XVII and I. When D1/J = −9.0, we again see
similar qualitative behaviors, as for D2/J = −9.0 in the previous figure, but now the Tt-line
separates the phases XVII and XVIII. The boundary lines separating P− and P+ phases also
show similar behaviors as in the previous figure. It should be noted that, while the ground-state
phase diagrams are exact, the temperature-dependent phase diagrams are calculated by using
numerical techniques, therefore there may have been some discrepancies from the ground-state
values.

5. Summary and conclusions

In this work we have analyzed a bilayer Ising model consisting of two Bethe lattices interacting
with an interlayer bilinear interaction, each of which is coupled with crystal fields and intralayer
bilinear interactions of different strengths, each with a branching ratio of q Ising spins with one
of the layers having only spin-1 and the other having only spin-3/2. The GS phase diagrams are
obtained exactly on different possible planes, depending on the given interaction parameters.
As a result, it was found that the GS phase diagrams remain qualitatively the same when
D/q J1 � 0 and when D/q J1 � −0.75, but they present differences in the transition region,
i.e. between these values of D/q J1. The GS configurations when D/q J1 < 0 correspond to
higher-energy configurations than D/q J1 � 0 and also, as D/q J1 becomes more negative, the
disorder in the configurations increases at low J3/J1 and J2/J1 values. The model presents
either first- or second-order phase transitions. The Tt-lines ending at the (◦)s along J3/J1 = 0
split into two symmetrical lines as D/q J1 becomes more negative, and end on the (•)s. We
see that, starting from the (◦)s up to the TP along J3/J1 = 0, there are lines of no transition,
indicated by the crossed lines for each given value of the system parameters. The Tc-lines
emerging from the two symmetrical (•)s end on the corresponding wing-shaped Tc-lines. The
finding that the system presents either stable or unstable (•)s, decided by comparing their
free energies, is also observed in the mixed spin-1 and spin-3/2 Ising models on a single-
layered Bethe [39] and on the honeycomb lattice [40]. The wing-shaped Tc-lines are also
observed in works where the effects of the interlayer exchange interaction Jinter in coupled
Co/Cu/Ni trilayers was studied, as motivated by experiments in [8], where they found an overall
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agreement with experimental results, and the work which investigated the phase transitions in
a bilayer lattice gas [41] modeled analogously similar to this work.

As a last word, we should note that it is really unfortunate for us not to be able to compare
our results directly with similar works. We hope that this work will lead others to study similar
systems by using different techniques.
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